Wiley-VCH


John Wiley & Sons Bayesian Analysis for the Social Sciences Cover Providing an accessible introduction to Bayesian methods for readers with a limited background in st.. Product #: 978-0-470-01154-6 Regular price: $63.46 $63.46 Auf Lager

Bayesian Analysis for the Social Sciences

Jackman, Simon

Wiley Series in Probability and Statistics

Cover

1. Auflage Oktober 2009
598 Seiten, Hardcover
Wiley & Sons Ltd

Kurzbeschreibung

Providing an accessible introduction to Bayesian methods for readers with a limited background in statistics, Bayesian Analysis for the Social Sciences uses real-life examples from political science, psychology, sociology and economics. Exercises emphasize key concepts, and examples throughout the book demonstrate how to implement WinBUGS, the most widely used Bayesian analysis software, and R, an open source statistical software. The book's accompanying website provides code, data sets and solutions for statisticians, graduate and postgraduate students in the social sciences who are interested in applying Bayesian methodology to their work.

ISBN: 978-0-470-01154-6
John Wiley & Sons

Weitere Versionen

PDF

Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS - the most-widely used Bayesian analysis software in the world - and R - an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.

List of Figures.

List of Tables.

Preface.

Acknowledgments.

Introduction.


Part I: Introducing Bayesian Analysis.

1. The foundations of Bayesian inference.

1.1 What is probability?

1.2 Subjective probability in Bayesian statistics.

1.3 Bayes theorem, discrete case.

1.4 Bayes theorem, continuous parameter.

1.5 Parameters as random variables, beliefs as distributions.

1.6 Communicating the results of a Bayesian analysis.

1.7 Asymptotic properties of posterior distributions.

1.8 Bayesian hypothesis testing.

1.9 From subjective beliefs to parameters and models.

1.10 Historical note.


2. Getting started: Bayesian analysis for simple models.

2.1 Learning about probabilities, rates and proportions.

2.2 Associations between binary variables.

2.3 Learning from counts.

2.4 Learning about a normal mean and variance.

2.5 Regression models.

2.6 Further reading.


Part II: Simulation Based Bayesian Analysis.

3. Monte Carlo methods.

3.1 Simulation consistency.

3.2 Inference for functions of parameters.

3.3 Marginalization via Monte Carlo integration.

3.4 Sampling algorithms.

3.5 Further reading.


4. Markov chains.

4.1 Notation and definitions.

4.2 Properties of Markov chains.

4.3 Convergence of Markov chains.

4.4 Limit theorems for Markov chains.

4.5 Further reading.


5. Markov chain Monte Carlo.

5.1 Metropolis-Hastings algorithm.

5.2 Gibbs sampling.


6. Implementing Markov chain Monte Carlo.

6.1 Software for Markov chain Monte Carlo.

6.2 Assessing convergence and run-length.

6.3 Working with BUGS/JAGS from R.

6.4 Tricks of the trade.

6.5 Other examples.

6.6 Further reading.


Part III: Advanced Applications in the Social Sciences.

7. Hierarchical Statistical Models.

7.1 Data and parameters that vary by groups: the case for hierarchical modeling.

7.2 ANOVA as a hierarchical model.

7.3 Hierarchical models for longitudinal data.

7.4 Hierarchical models for non-normal data.

7.5 Multi-level models.


8. Bayesian analysis of choice making.

8.1 Regression models for binary responses.

8.2 Ordered outcomes.

8.3 Multinomial outcomes.

8.4 Multinomial probit.


9. Bayesian approaches to measurement.

9.1 Bayesian inference for latent states.

9.2 Factor analysis.

9.3 Item-response models.

9.4 Dynamic measurement models.


Part IV: Appendices.

Appendix A: Working with vectors and matrices.


Appendix B: Probability review.

B.1 Foundations of probability.

B.2 Probability densities and mass functions.

B.3 Convergence of sequences of random variabales.


Appendix C: Proofs of selected propositions.

C.1 Products of normal densities.

C.2 Conjugate analysis of normal data.

C.3 Asymptotic normality of the posterior density.

References.


Topic index.

Author index.

News

ISNI (International Standard Name Identifier)

Profitieren Sie als Autor*in von Wiley-VCH von der weltweit eindeutigen Kennung ISNI (International Standard Name Identifier)

Weiterlesen ...

Frischer Sommer-Wind!

Wir präsentieren Ihnen den bewährten Inhalt unserer Website ab sofort im neuen Look! Moderner, übersichtlicher und leichter zugänglich - damit Sie immer alles im Blick haben.

Neue Digitale Lehrbuchkollektionen

Neue Digitale Lehrbuchkollektionen

Mit unseren Lehrbuchpaketen sind Sie optimal ausgestattet! Sparen Sie sich langwieriges und mühsames Zusammensuchen einzelner Titel. Wir haben Ihnen die wichtigsten Titel nach Fachgebieten in praktischen Paketen zusammengestellt.

Weiterlesen ...

Brands & Imprints

Advanced Portfolio
Wiley-VCH Materials Views
Science to go
Wiley Wirtschaft
Wiley-VCH Dummies
Chemanager
Wiley-VCH Sybex
Wiley-VCH Pro Physik
Wiley-VCH Chemistry Views
Wiley Online Library
Ernst & Sohn
Wiley-VCH Advanced Controlling

Mehr