John Wiley & Sons Glass-Ceramic Technology Cover An updated edition of the essential guide to the technology of glass-ceramic technology Glass-ceram.. Product #: 978-1-119-42369-0 Regular price: $167.29 $167.29 In Stock

Glass-Ceramic Technology

Holand, Wolfram / Beall, George H.

Cover

3. Edition October 2019
448 Pages, Hardcover
Practical Approach Book

ISBN: 978-1-119-42369-0
John Wiley & Sons

Buy now

Price: 179,00 €

Price incl. VAT, excl. Shipping

Further versions

pdf

An updated edition of the essential guide to the technology of glass-ceramic technology

Glass-ceramic materials share many properties with both glass and more traditional crystalline ceramics. The revised third edition of Glass-Ceramic Technology offers a comprehensive and updated guide to the various types of glass-ceramic materials, the methods of development, and the myriad applications for glass-ceramics. Written in an easy-to-use format, the book includes an explanation of the new generation of glass-ceramics.

The updated third edition explores glass-ceramics new materials and properties and reviews the expanding regions for applying these materials. The new edition contains current information on glass/glass-ceramic forming in general and explores specific systems, crystallization mechanisms and products such as: ion exchange strengthening of glass-ceramics, glass-ceramics for mobile phones, new glass-ceramics for energy, and new glass-ceramics for optical and architectural application. It also contains a new section on dental materials and twofold controlled crystallization. This revised guide:
* Offers an important new section on glass/glass ceramic forming
* Includes the fundamentals and the application of nanotechnology as related to glass-ceramic technology
* Reviews the development of the various types of glass-ceramic materials
* Covers information on new glass-ceramics with new materials and properties and outlines the opportunities for applying these materials

Written for ceramic and materials engineers, managers, and designers in the ceramic and glass industry, the third edition of Glass-Ceramic Technology features new sections on Glass/Glass-Ceramic Forming and new Glass-Ceramics as well as expanded sections on dental materials and twofold controlled crystallization.

Introduction to the Third Edition xi

History xiii

1 Principles of Designing Glass-Ceramic Formation 1

1.1 Advantages of Glass-Ceramic Formation 1

1.1.1 Processing Properties 1

1.1.2 Thermal Properties 2

1.1.3 Optical Properties 3

1.1.4 Chemical Properties 3

1.1.5 Biological Properties 3

1.1.6 Mechanical Properties 3

1.1.7 Electrical and Magnetic Properties 3

1.2 Factors of Design 4

1.3 Crystal Structures and Mineral Properties 4

1.3.1 Crystalline Silicates 4

1.3.1.1 Nesosilicates 5

1.3.1.2 Sorosilicates 5

1.3.1.3 Cyclosilicates 5

1.3.1.4 Inosilicates 6

1.3.1.5 Phyllosilicates 7

1.3.1.6 Tectosilicates 7

1.3.2 Phosphates 27

1.3.2.1 Apatite 27

1.3.2.2 Orthophosphates and Diphosphates 29

1.3.2.3 Metaphosphates 30

1.3.3 Oxides 31

1.3.3.1 TiO2 32

1.3.3.2 ZrO2 32

1.3.3.3 MgAl2O4 (Spinel) 33

1.4 Nucleation 34

1.4.1 Homogeneous Nucleation 36

1.4.2 Heterogeneous Nucleation 38

1.4.3 Kinetics of Homogeneous and Heterogeneous Nucleation 39

1.4.4 Limits of the Classical Nucleation and Crystallization Theory (CNT) and New Approaches 42

1.4.5 Examples of Applying the Nucleation Theory in the Development of Glass-Ceramics 44

1.4.5.1 Internal (Volume) Nucleation 44

1.4.5.2 Surface Nucleation 48

1.4.5.3 Temperature-Time-Transformation Diagrams 50

1.5 Crystal Growth 53

1.5.1 Primary Growth 54

1.5.2 Anisotropic Growth 55

1.5.3 Surface Growth 61

1.5.4 Dendritic and Spherulitic Crystallization 62

1.5.4.1 Phenomenology 62

1.5.4.2 Dendritic and Spherulitic Crystallization Applications 64

1.5.5 Secondary Grain Growth 64

2 Composition Systems for Glass-Ceramics 67

2.1 Alkaline and Alkaline Earth Silicates 67

2.1.1 SiO2-Li2O (Lithium Disilicate) 67

2.1.1.1 Stoichiometric Composition 67

2.1.1.2 Nonstoichiometric Multicomponent Compositions 69

2.1.2 SiO2-BaO (Sanbornite) 78

2.1.2.1 Stoichiometric Barium Disilicate 78

2.1.2.2 Multicomponent Glass-Ceramics 79

2.2 Aluminosilicates 80

2.2.1 SiO2-Al2O3 (Mullite) 80

2.2.2 SiO2-Al2O3-Li2O (ß-Quartz Solid Solution, ß-Spodumene Solid Solution) 82

2.2.2.1 ß-Quartz Solid Solution Glass-Ceramics 82

2.2.2.2 ß-Spodumene Solid Solution Glass-Ceramics 86

2.2.3 SiO2-Al2O2-Na2O (Nepheline) 88

2.2.4 SiO2-Al2O3-Cs2O (Pollucite) 91

2.2.5 SiO2-Al2O3-MgO (Cordierite, Enstatite, Forsterite) 93

2.2.5.1 Cordierite Glass-Ceramics 93

2.2.5.2 Enstatite Glass-Ceramics 97

2.2.5.3 Forsterite Glass-Ceramics 99

2.2.6 SiO2-Al2O3-CaO (Wollastonite) 101

2.2.7 SiO2-Al2O3-ZnO (Zn-Stuffed ß-Quartz, Willemite-Zincite) 103

2.2.7.1 Zinc-Stuffed ß-Quartz Glass-Ceramics 103

2.2.7.2 Willemite and Zincite Glass-Ceramics 105

2.2.8 SiO2-Al2O3-ZnO-MgO (Spinel, Gahnite) 105

2.2.8.1 Spinel Glass-Ceramic without ß-Quartz 105

2.2.8.2 ß-Quartz-Spinel Glass-Ceramics 107

2.2.9 SiO2-Al2O3-CaO (Slag Sital) 108

2.2.10 SiO2-Al2O3-K2O (Leucite) 111

2.2.11 SiO2-Ga2O3-Al2O3-Li2O-Na2O-K2O (Li-Al-Gallate Spinel) 114

2.2.12 SiO2-Al2O3-SrO-BaO (Sr-Feldspar-Celsian) 115

2.3 Fluorosilicates 118

2.3.1 SiO2-(R¯3+)2O3-MgO-(R¯2+)O-(R¯+)2O-F (Mica) 118

2.3.1.1 Alkaline Phlogopite Glass-Ceramics 119

2.3.1.2 Alkali-Free Phlogopite Glass-Ceramics 124

2.3.1.3 Tetrasilicic Mica Glass-Ceramic 125

2.3.2 SiO2-Al2O3-MgO-CaO-ZrO2-F (Mica, Zirconia) 126

2.3.3 SiO2-CaO-R2O-F (Canasite) 128

2.3.4 SiO2-MgO-CaO-(R¯+)2O-F (Amphibole) 132

2.4 Silicophosphates 136

2.4.1 SiO2-CaO-Na2O-P2O5 (Apatite) 136

2.4.2 SiO2-MgO-CaO-P2O5-F (Apatite,Wollastonite) 137

2.4.3 SiO2-MgO-Na2O-K2O-CaO-P2O5 (Apatite) 138

2.4.4 SiO2-Al2O3-MgO-CaO-Na2O-K2O-P2O5-F (Mica, Apatite) 139

2.4.5 SiO2-MgO-CaO-TiO2-P2O5 (Apatite, Magnesium Titanate) 143

2.4.6 SiO2-Al2O3-CaO-Na2O-K2O-P2O5-F (Needlelike Apatite) 144

2.4.6.1 Formation of Needlelike Apatite as a Parallel Reaction to Rhenanite 147

2.4.6.2 Formation of Needlelike Apatite from Disordered Spherical Fluoroapatite 151

2.4.7 SiO2-Al2O3-CaO-Na2O-K2O-P2O5-F/Y2O3, B2O3 (Apatite and Leucite) 152

2.4.7.1 Fluoroapatite and Leucite 152

2.4.7.2 Silicate Oxyapatite and Leucite 153

2.4.8 SiO2-CaO-Na2O-P2O5-F (Rhenanite) 156

2.5 Iron Silicates 158

2.5.1 SiO2-Fe2O3-CaO 158

2.5.2 SiO2-Al2O3-FeO-Fe2O3-K2O (Mica, Ferrite) 159

2.5.3 SiO2-Al2O3-Fe2O3-(R+)2O-(R¯2+)O (Basalt) 160

2.6 Phosphates 163

2.6.1 P2O5-CaO (Metaphosphates) 163

2.6.2 P2O5-CaO-TiO2 166

2.6.3 P2O5-Na2O-BaO and P2O5-TiO2-WO3 167

2.6.3.1 P2O5-Na2O-BaO System 167

2.6.3.2 P2O3-TiO2-WO3 System 167

2.6.4 P2O5-Al2O3-CaO (Apatite) 167

2.6.5 P2O5-B2O3-SiO2 169

2.6.6 P2O5-SiO2-Li2O-ZrO2 170

2.6.6.1 Glass-Ceramics Containing 16 wt% ZrO2 171

2.6.6.2 Glass-Ceramics Containing 20 wt% ZrO2 171

2.6.7 P2O5-FeO-Na2O (Pyrophosphate) 174

2.7 Ion Exchange in Glass-Ceramics 174

2.8 Rare Earth-Doped Light-Transmitting Glass-Ceramics 186

2.8.1 Ce:YAG Glass-Ceramics for White LEDs 186

2.8.2 Eu, Dy:SrAl2O4 Transparent Glass-Ceramics with Long Phosphorescence and High Brightness 188

2.8.3 Eu¯2+-Activated ß-Ca2SiO4 and Ca3Si2O7 Green and Red Phosphors for White LEDs 191

2.8.4 Transparent (Er,Yb)NbO4-ß-Quartz Solid Solution Glass-Ceramics 193

2.9 Extension of Glass-Ceramic Systems Developed on the Basis of Multifold Nucleation and Crystallization Mechanisms 193

2.9.1 Sr-apatite-Leucite/Pollucite/Rb-leucite 194

2.9.1.1 Internal Nucleation and Crystallization 194

2.9.1.2 Internal Mechanisms Combined with Surface Nucleation and Crystallization 195

2.9.2 Lithium Disilicate-Apatite Glass-Ceramic 197

2.9.3 Lithium Disilicate and Cesium Aluminosilicate Glass-Ceramics 203

2.9.4 Lithium Disilicate-Diopside/Wollastonite Glass-Ceramic 205

2.9.5 Lithium Disilicate-Niobate/Tantalate Glass-Ceramic 207

2.9.6 Quartz-Lithium Disilicate Glass-Ceramic 207

2.9.7 Transparent Glass-Ceramics Based on Lithium Disilicate and Petalite 209

2.10 Other Systems 210

2.10.1 Perovskite-Type Glass-Ceramics 210

2.10.1.1 SiO2-Nb2O5-Na2O-(BaO) 210

2.10.1.2 SiO2-Al2O3-TiO2-PbO 211

2.10.1.3 SiO2-Al2O3-K2O-Ta2O5-Nb2O5 212

2.10.2 SiO2-B2O3-TiO2-La2O3 System 213

2.10.3 Transparent and Highly Crystalline BaAl4O7 Glass-Ceramics 213

2.10.4 Chalcogenide Glass-Ceramics 214

2.10.5 Ilmenite-Type (SiO2-Al2O3-Li2O-Ta2O5) Glass-Ceramics 214

2.10.6 B2O3-BaFe12O19 (Barium Hexaferrite) or (BaFe10O15) Barium Ferrite 214

2.10.7 SiO2-Al2O3-BaO-TiO2 (Barium Titanate) 215

2.10.8 Bi2O3-SrO-CaO-CuO 216

3 Microstructure Control 217

3.1 Solid State Reactions 217

3.1.1 Isochemical Phase Transformation 217

3.1.2 Reactions Between Phases 218

3.1.3 Exsolution 218

3.1.4 Use of Phase Diagrams to Predict Glass-Ceramic Assemblages 218

3.2 Microstructure Design 219

3.2.1 Nanocrystalline Microstructures 219

3.2.2 Cellular Membrane Microstructures 221

3.2.3 Coast-and-Island Microstructure 222

3.2.4 Dendritic Microstructures 225

3.2.5 Relict Microstructures 227

3.2.6 House-of-Cards Microstructures 228

3.2.6.1 Nucleation Reactions 229

3.2.6.2 Primary Crystal Formation and Mica Precipitation 229

3.2.7 Cabbage-Head Microstructures 229

3.2.8 Acicular Interlocking Microstructures 235

3.2.9 Lamellar Twinned Microstructures 237

3.2.10 Preferred Crystal Orientation 238

3.2.11 Crystal Network Microstructures 240

3.2.12 Nature as an Example 242

3.2.13 Nanocrystals 242

3.3 Control of Key Properties 243

3.3.1 General 243

3.3.2 Multifold Nucleation and Crystallization 245

3.3.2.1 Control of Mechanical and Thermal Properties 245

3.3.2.2 Control of Optical and Thermal Properties 245

3.3.2.3 Control of Mechanical and Optical Properties 246

3.3.2.4 Control of Mechanical and Magnetic Properties 246

3.3.2.5 Control of Biological and Mechanical Properties 246

3.4 Methods and Measurements 246

3.4.1 Chemical System and Crystalline Phases 246

3.4.2 Determination of Crystal Phases 247

3.4.3 Kinetic Process of Crystal Formation 249

3.4.4 Determination of Microstructure 252

3.4.5 Mechanical, Optical, Electrical, Chemical, and Biological Properties 252

3.4.5.1 Optical Properties and Chemical Composition of Glass-Ceramics 254

3.4.5.2 Mechanical Properties and Microstructure of Glass-Ceramics 254

3.4.5.3 Electrical Properties 256

3.4.5.4 Chemical Properties 256

3.4.5.5 Biological Properties 257

4 Applications of Glass-Ceramics 259

4.1 Technical Applications 259

4.1.1 Radomes 259

4.1.2 Photosensitive and Etched Patterned Materials 259

4.1.2.1 Fotoform® and Fotoceram® 259

4.1.2.2 Foturan® 262

4.1.2.3 Additional Products 265

4.1.3 Machinable Glass-Ceramics 265

4.1.3.1 MACOR®and DICOR® 265

4.1.3.2 Vitronit(TM) 268

4.1.3.3 Photoveel(TM) 269

4.1.4 Magnetic Memory Disk Substrates 269

4.1.5 Liquid Crystal Displays 273

4.2 Consumer Applications 273

4.2.1 ß-Spodumene Solid-Solution Glass-Ceramic 273

4.2.2 ß-Quartz Solid-Solution Glass-Ceramic 274

4.3 Optical Applications 279

4.3.1 Telescope Mirrors 279

4.3.1.1 Requirements for Their Development 279

4.3.1.2 Zerodur® Glass-Ceramics 279

4.3.2 Integrated Lens Arrays 281

4.3.3 Applications for Luminescent Glass-Ceramics 283

4.3.3.1 Cr-Doped Mullite for Solar Concentrators 283

4.3.3.2 Cr-Doped Gahnite Spinel for Tunable Lasers and Optical Memory Media 286

4.3.3.3 Rare-Earth Doped Oxyfluorides for Amplification, Upconversion, and Quantum Cutting 287

4.3.3.4 Chromium (Cr¯4+)-Doped Forsterite, ß-Willemite, and Other Orthosilicates for Broad Wavelength Amplification 293

4.3.3.5 Ni¯2+-Doped Gallate Spinel for Amplification and Broadband Infrared Sources 295

4.3.3.6 YAG Glass-Ceramic Phosphor for White LED 300

4.3.4 Optical Components 300

4.3.4.1 Glass-Ceramics for Fiber Bragg Grating Athermalization 300

4.3.4.2 Laser-Induced Crystallization for Optical Gratings andWaveguides 306

4.3.4.3 Glass-Ceramic Ferrule for Optical Connectors 307

4.3.4.4 Applications for Transparent ZnO Glass-Ceramics with Controlled Infrared Absorbance and Microwave Susceptibility 308

4.4 Medical and Dental Glass-Ceramics 309

4.4.1 Glass-Ceramics for Medical Applications 310

4.4.1.1 CERABONE® 310

4.4.1.2 CERAVITAL® 311

4.4.1.3 BIOVERIT® 312

4.4.2 Glass-Ceramics for Dental Restoration 313

4.4.2.1 Moldable Glass-Ceramics for Metal-Free Dental Restorations 314

4.4.2.2 Machinable Glass-Ceramics 324

4.4.2.3 Fusion of Glass-Ceramics on High Toughness Sintered Ceramics 332

4.4.2.4 Leucite-Apatite Glass-ceramic on Metal Frameworks and Metal-Free Restorations 335

4.5 Electrical and Electronic Applications 339

4.5.1 Insulators 339

4.5.2 Electronic Packaging 340

4.5.2.1 Requirements for Their Development 340

4.5.2.2 Properties and Processing 341

4.5.2.3 Applications 342

4.5.3 Dielectric Glass-Ceramics for GHz Electronics 343

4.6 Architectural Applications 345

4.7 Coatings and Solders 347

4.8 Glass-Ceramics for Energy Applications 348

4.8.1 Glass-Ceramic Components for Batteries 349

4.8.1.1 Glass-Ceramics as Cathodes for Lithium or Sodium Ion Batteries and Glass as Anodes 349

4.8.1.2 Electrolytes 349

4.8.2 Joining Materials for Solid Oxide Fuel Cell Components 350

4.9 Application of Glass-Ceramic Principle to Functional Materials 352

4.10 Forming Processes for Glass-Ceramics 352

4.10.1 Pressing 352

4.10.2 Casting 353

4.10.3 Spinning (Centrifugal Casting) 353

4.10.4 Rolling 354

4.10.5 Float Process 354

4.10.6 Direct Forming or Reforming of Glass-Ceramics 357

5 Future Directions 358

Appendix A: Twenty-one Figures of 23 Crystal Structures 360

References 381

Index 415
WOLFRAM HÖLAND is retired from Ivoclar Vivadent AG (Liechtenstein) since 2016 but he is a consultant for this company. In 2018, he finished his activity as a Lecturer at the Department of Inorganic Chemistry, Eidgenössische Technische Hochschule (ETH) in Zürich, Switzerland.

GEORGE H. BEALL, PHD, is a Corporate Fellow, retired, in the Science and Technology Division of Corning Incorporated, Corning, New York. He is a Distinguished Life Member of the American Ceramic Society.

Between them, Drs. Höland and Beall hold over 200 US patents, over 200 publications, and 10 textbooks.

W. Holand, Ivoclar Vivadent AG; G. H. Beall, Corning Incorporated