John Wiley & Sons Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells Cover Offers an Interdisciplinary approach to the engineering of functional materials for efficient solar .. Product #: 978-1-119-55733-3 Regular price: $129.91 $129.91 In Stock

Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells

Pandikumar, Alagarsamy / Jothivenkatachalam, Kandasamy / Bhojanaa, Karuppanapillai B. (Editor)

Cover

1. Edition February 2020
288 Pages, Hardcover
Wiley & Sons Ltd

ISBN: 978-1-119-55733-3
John Wiley & Sons

Buy now

Price: 139,00 €

Price incl. VAT, excl. Shipping

Further versions

epubmobipdf

Offers an Interdisciplinary approach to the engineering of functional materials for efficient solar cell technology

Written by a collection of experts in the field of solar cell technology, this book focuses on the engineering of a variety of functional materials for improving photoanode efficiency of dye-sensitized solar cells (DSSC). The first two chapters describe operation principles of DSSC, charge transfer dynamics, as well as challenges and solutions for improving DSSCs. The remaining chapters focus on interfacial engineering of functional materials at the photoanode surface to create greater output efficiency.

Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells begins by introducing readers to the history, configuration, components, and working principles of DSSC It then goes on to cover both nanoarchitectures and light scattering materials as photoanode. Function of compact (blocking) layer in the photoanode and of TiCl4 post-treatment in the photoanode are examined at next. Next two chapters look at photoanode function of doped semiconductors and binary semiconductor metal oxides. Other chapters consider nanocomposites, namely, plasmonic nanocomposites, carbon nanotube based nanocomposites, graphene based nanocomposites, and graphite carbon nitride based nanocompositesas photoanodes. The book:
* Provides comprehensive coverage of the fundamentals through the applications of DSSC
* Encompasses topics on various functional materials for DSSC technology
* Focuses on the novel design and application of materials in DSSC, to develop more efficient renewable energy sources
* Is useful for material scientists, engineers, physicists, and chemists interested in functional materials for the design of efficient solar cells

Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells will be of great benefit to graduate students, researchers and engineers, who work in the multi-disciplinary areas of material science, engineering, physics, and chemistry.

List of Contributors xi

Preface xv

1 Dye-Sensitized Solar Cells: History, Components, Configuration, and Working Principle 1
S.N. Karthick, K.V. Hemalatha, Suresh Kannan Balasingam, F. Manik Clinton, S. Akshaya, and Hee-Je Kim

1.1 Introduction 1

1.2 History of Dye-sensitized Solar Cells 3

1.3 Components of DSSCs 4

1.3.1 Conductive Glass Substrate 4

1.3.2 Photoanode 4

1.3.3 Counter Electrode 4

1.3.4 Electrolytes 6

1.3.4.1 Types of Solvents Used in Electrolytes 6

1.3.4.2 Alternative Redox Mediators 7

1.3.5 Dyes 8

1.4 Configuration of DSSCs 8

1.4.1 Metal Substrates for Photoanode and Glass/TCO for Counter Electrode 8

1.4.2 Metal Substrates for Counter Electrode and Glass/TCO for Photoanode 10

1.4.3 Metal Substrate for Photoanode and Polymer Substrate for Counter Electrode 10

1.4.4 Polymer Substrates for Flexible DSSCs 10

1.4.5 Glass/TCO-Free Metal Substrates for Flexible DSSCs 11

1.4.6 Glass/TCO-Free Metal Wire Substrates for Flexible DSSCs 11

1.5 Working Principle of DSSCs 11

1.5.1 Electron Transfer Mechanism in DSSCs 14

1.5.2 Photoelectric Performance 14

Acknowledgments 15

References 15

2 Function of Photoanode: Charge Transfer Dynamics, Challenges, and Alternative Strategies 17
A. Dennyson Savariraj and R.V. Mangalaraja

2.1 Introduction 17

2.2 The General Composition of DSSC 18

2.3 Selection of Substrate for DSSCs 18

2.4 Photoanode 19

2.4.1 Coating Procedure 20

2.4.2 Significance of Using Mesoporous Structure 20

2.5 Sensitizer 20

2.6 Charge Transfer Mechanism 21

2.7 Interfaces 21

2.8 Significance of Dye/Metal Oxide Interface 22

2.9 Factors That Influence Efficiency in DSSC 23

2.9.1 Dye Aggregation 23

2.9.2 Effect of Metal Oxide on the Performance of Metal Oxide/Dye Interface 24

2.9.3 Role of Electronic Structure of Metal Oxides 25

2.10 Kinetics of Operation in DSSCs 26

2.11 Strategies to Improve the Photoanode Performance 28

2.11.1 TiCl4 Treatment 28

2.11.2 Composites 28

2.11.3 Light Scattering 29

2.11.4 Nanoarchitectures 29

2.11.5 Doping 30

2.11.6 Interfacial Engineering 30

2.12 Conclusion 30

Acknowledgments 31

References 31

3 Nanoarchitectures as Photoanodes 35
Hari Murthy

3.1 Introduction 35

3.2 DSSC Operation 36

3.3 Nanoarchitectures for Improved Device Performance of Photoanodes 39

3.3.1 TiO2 39

3.3.2 ZnO 51

3.3.3 SnO2 53

3.3.4 Nb2O5 55

3.3.5 Graphene 55

3.3.6 Other Photoanode Materials 56

3.4 Future Outlook and Challenges 65

3.5 Conclusion 66

References 66

4 Light Scattering Materials as Photoanodes 79
Rajkumar C and A. Arulraj

4.1 Introduction 79

4.2 Introduction to Light Scattering 79

4.3 Materials for Light Scattering in DSSCs 80

4.4 Early Theoretical Predictions of Light Scattering in DSSCs 82

4.5 Different Light Scattering Materials 85

4.5.1 Mixing of Large Particles into Small Particles 85

4.5.2 Voids as Light Scatters 87

4.5.3 Nano-Composites for Light Scattering 87

4.5.3.1 Nanowire-Nanoparticle Composite 87

4.5.3.2 Nanofiber-Nanoparticle Composite 87

4.5.3.3 SrTiO3 Nanocubes-ZnO Nanoparticle Composite 88

4.5.3.4 Silica Nanosphere-ZnO Nanoparticle Composite 88

4.5.3.5 SnO2 Aggregate-SnO2 Nanosheet Composite 88

4.5.3.6 Ag (4,4'-Dicyanamidobiphenyl) Complex-TiO2 NP Composite 88

4.6 Light Scattering Layers 88

4.6.1 Surface Modified TiO2 Particles in Scattering Layer 88

4.6.2 Dual Functional Materials in DSSC 89

4.6.3 Double-Light Scattering Layer 89

4.6.4 Large Particles as Scattering Layers 89

4.6.4.1 TiO2 Nanotubes 90

4.6.4.2 TiO2 Nanowires 90

4.6.4.3 TiO2 Nanospindles 90

4.6.4.4 TiO2 Nanofibers 90

4.6.4.5 TiO2 Rice Grain Nanostructures 90

4.6.4.6 Nest-Shaped TiO2 Structures 91

4.6.4.7 Nano-Embossed Hollow Spherical TiO2 91

4.6.4.8 Hexagonal TiO2 Plates 91

4.6.4.9 TiO2 Photonic Crystals 91

4.6.4.10 Cubic CeO2 Nanoparticles 94

4.6.4.11 Spherical TiO2 Aggregates 94

4.6.4.12 Hierarchical TiO2 Submicroflowers 94

4.6.4.13 SnO2 Aggregates 94

4.6.4.14 ZnO Nanoflowers 95

4.6.5 Core-Shell Nanoparticles for Light Scattering in DSSCs 95

4.6.6 Double-Layer Photoanode 95

4.6.6.1 TiO2 Aggregates 96

4.6.6.2 Morphology-Controlled 1D-3D Bilayer TiO2 Nanostructures 96

4.6.6.3 Quintuple-Shelled SnO2 Hollow Microspheres 96

4.6.6.4 Carbon-Based Materials for Light Scattering 96

4.6.6.5 3D N-Doped TiO2 Microspheres Used as Scattering Layers 96

4.6.6.6 ZnO Hollow Spheres and Urchin-like TiO2 Microspheres 96

4.6.6.7 SnO2 as Light-Scattering Layer 97

4.6.7 Three-Layer Photoanode 97

4.6.8 Four-Layer Photoanode 97

4.6.9 Surface Plasmon Effect in DSSC 97

4.7 Conclusion 99

References 99

5 Function of Compact (Blocking) Layer in Photoanode 107
Su Pei Lim

5.1 Introduction 107

5.2 Titanium Dioxide (TiO2) and Titanium (Ti)-Based Material as a Compact Layer 107

5.3 Zinc Oxide (ZnO) as a Compact Layer 112

5.4 Less Common Metal Oxide as a Compact Layer 117

5.5 Conclusion 118

References 121

6 Function of TiCl4 Posttreatment in Photoanode 125
T.S. Senthil and C.R. Kalaiselvi

6.1 Introduction 125

6.2 Role of TiCl4 Posttreatment in Photo-Anode 126

6.3 Effect of Posttreatment of TiCl4 on Various Perspectives 126

6.3.1 TiO2 Morphology, Porosity, and Surface Area 126

6.3.2 Dye Adsorption and Photocurrent Generation 129

6.3.3 Electron Transport and Diffusion Coefficient 132

6.3.4 Recombination Losses at Short Circuit 134

6.3.5 Concentration and Dipping Time of TiCl4 135

6.4 Conclusion 136

References 137

7 Doped Semiconductor as Photoanode 139
K. S. Rajni and T. Raguram

7.1 Introduction 139

7.2 Photoanode 140

7.3 Characterization 141

7.4 Doped TiO2 Photoanodes 141

7.4.1 Alkali Earth Metals-doped TiO2 141

7.4.1.1 Lithium-doped TiO2 141

7.4.1.2 Magnesium-doped TiO2 143

7.4.1.3 Calcium-doped TiO2 143

7.4.2 Metalloids-doped TiO2 143

7.4.2.1 Boron-doped TiO2 145

7.4.2.2 Silicon-doped TiO2 145

7.4.2.3 Germanium-doped TiO2 145

7.4.2.4 Antimony-doped TiO2 146

7.4.3 Nonmetals-doped TiO2 146

7.4.3.1 Carbon-doped TiO2 146

7.4.3.2 Nitrogen-doped TiO2 147

7.4.3.3 Fluorine-doped TiO2 147

7.4.3.4 Sulfur-doped TiO2 147

7.4.3.5 Iodine-doped TiO2 148

7.4.4 Transition Metals-doped TiO2 148

7.4.4.1 Scandium-doped TiO2 148

7.4.4.2 Vanadium, Niobium, and Tantalum-doped TiO2 148

7.4.4.3 Chromium-doped TiO2 148

7.4.4.4 Manganese and Cobalt-doped TiO2 150

7.4.4.5 Iron-doped TiO2 150

7.4.4.6 Nickel-doped TiO2 151

7.4.4.7 Copper-doped TiO2 152

7.4.4.8 Zinc-doped TiO2 153

7.4.4.9 Yttrium-doped TiO2 153

7.4.4.10 Zirconium-doped TiO2 154

7.4.4.11 Molybdenum-doped TiO2 154

7.4.4.12 Silver-doped TiO2 155

7.4.5 Post-Transition Metals 155

7.4.5.1 Aluminum-doped TiO2 155

7.4.5.2 Gallium-doped TiO2 155

7.4.5.3 Indium-doped TiO2 155

7.4.5.4 Tin-doped TiO2 156

7.4.6 Lanthanides-doped TiO2 156

7.4.6.1 Lanthanum-doped TiO2 156

7.4.6.2 Cerium-doped TiO2 156

7.4.6.3 Neodymium-doped TiO2 157

7.4.6.4 Samarium-doped TiO2 157

7.4.6.5 Europium-doped TiO2 157

7.4.7 Co-doped TiO2 158

7.4.8 Tri-doped TiO2 158

7.5 Conclusion 158

References 159

8 Binary Semiconductor Metal Oxide as Photoanodes 163
S.S. Kanmani, I. John Peter, A. Muthu Kumar, P. Nithiananthi, C. Raja Mohan, and K. Ramachandran

8.1 Why Metal Oxide Semiconductors? 163

8.2 Development of MOS-Based DSSC 164

8.2.1 TiO2/ZnO Core/Shell Configuration 165

8.2.2 Preparation of TiO2/ZnO Core/Shell Nanomaterials 165

8.2.3 TiO2/ZnO Core/Shell Nanomaterials 165

8.2.4 DSSC Performance of TiO2/ZnO Core/Shell Configuration 167

8.3 Importance of Heterostructures 170

8.4 I-V Characteristics 171

8.5 Matching of Bandgaps 171

8.6 Conclusion 189

References 189

9 Plasmonic Nanocomposite as Photoanode 193
Su Pei Lim

9.1 Introduction 193

9.2 Plasmonic Nanocomposite Modified TiO2 as Photoanode 193

9.3 Plasmonic Nanocomposite Modified ZnO as Photoanode 197

9.4 Plasmonic Nanocomposite Modified with Less Common Metal Oxide as Photoanode 203

9.5 Conclusion 206

References 206

10 Carbon Nanotubes-Based Nanocomposite as Photoanode 213
Giovana R. Cagnani, Nirav Joshi, and Flavio M. Shimizu

10.1 Introduction 213

10.2 Recent Advances on DSSC Photoanodes 215

10.3 Structure and Properties of Carbon Nanotubes 216

10.4 CNT-Based Photoanode Material 218

10.5 Effect of the Morphology and Interface of the CNT Photoanodes on the Efficiency of the DSSC 221

10.6 Summary and Future Prospect 223

Acknowledgment 223

References 223

11 Graphene-Based Nanocomposite as Photoanode 231
Subhendu K. Panda, G. Murugadoss, and R. Thangamuthu

11.1 Introduction 231

11.2 Graphene-TiO2 Nanocomposite for Photoanode 232

11.3 Conclusion and Remarks 241

References 242

12 Graphitic Carbon Nitride Based Nanocomposites as Photoanodes 247
T.S. Shyju, S. Anandhi, P. Vengatesh, C. Karthik Kumar, and M. Paulraj

12.1 Introduction 247

12.2 Importance of Graphitic Carbon Nitride 248

12.3 Photoanodes for DSSC 250

12.4 Preparation of Graphitic Carbon Nitride 252

12.4.1 Bulk Graphitic Carbon Nitride 253

12.4.2 Mesoporous Graphitic Carbon Nitrides 253

12.4.3 Doping in Graphitic Carbon Nitride 254

12.4.4 Ag Deposited g-C3N4 254

12.4.5 Chemical Doping 254

12.5 Operation Principles of DSSC 255

12.5.1 Nanostructured Graphitic Carbon Nitride in DSSC 257

12.6 Graphitic Carbon Nitride in Polymer Films Solar Cell 259

12.7 Preparation of Carbon Nitride Counter Electrode 259

12.8 Quantum Dot Graphitic Carbon Nitride 260

12.9 Porous Graphitic Carbon Nitride 260

12.10 Summary 260

Acknowledgment 261

References 261

Index 265
ALAGARSAMY PANDIKUMAR, PHD, is Scientist at CSIR-Central Electrochemical Research Institute, Karaikudi, India. His research includes development of novel materials involving graphene, graphitic carbon nitrides, and transition metal chalcogenides in combination with metals, metal oxides, polymers and carbon nanotubes for applications in photocatalysis, photoelectrocatalysis, dye-sensitized solar cells and electrochemical sensor.

KANDASAMY JOTHIVENKATACHALAM, PHD, is Professor of Chemistry at Anna University, BIT campus, Tiruchirappalli, India. His research interests include photocatalysis, photoelectrochemistry, photoelectrocatalysis, and chemically modified electrodes.

KARUPPANAPILLAI B. BHOJANAA, MSc, is DST-INSPIRE Research Fellow at Functional Materials Division, CSIR-Central Electrochemical Research Institute, Karaikudi, India.