Wiley-VCH, Weinheim Laser-Based Additive Manufacturing Cover .. Product #: 978-3-527-34791-9 Regular price: $129.91 $129.91 In Stock

Laser-Based Additive Manufacturing

Modeling, Simulation and Experiments

Dahotre, Narendra B. / Pantawane, Mangesh V. / Sharma, Shashank

Cover

1. Edition August 2022
304 Pages, Hardcover
15 Pictures (11 Colored Figures)
Handbook/Reference Book

ISBN: 978-3-527-34791-9
Wiley-VCH, Weinheim

Buy now

Price: 139,00 €

Price incl. VAT, excl. Shipping

Further versions

epubmobipdf
1 INTRODUCTION TO ADDITIVE MANUFACTURING
1.1 Manufacturing Techniques
1.2 What is Additive Manufacturing (AM)?
1.3 Laser-based Additive Manufacturing (LAM)?
1.4 Advantages of AM over Conventional Manufacturing
1.5 Current Challenges Associated with AM
1.6 Importance of Computational Modeling in AM
1.7 References

2 COMPUTATIONAL MATERIALS SCIENCE
2.1 Introduction to Computational Materials Science
2.2 Length- and Time-Scale in Materials Modeling
2.3 Current State of Computational Modeling in LAM
2.4 References

3 LASER-MATERIAL INTERACTION IN LAM
3.1 Conversion of Light Energy to Heat
3.2 Modes of Heat Dissipation
3.3 Dynamics of the Melt-Pool
3.4 References

4 MICROSTRUCTURAL AND MECHANICAL ASPECTS IN LAM INTEGRATED WITH MODELING
4.1 Solidification
4.2 Microstructural Variation and its Prediction
4.3 Effects of Laser Parameters
4.4 Scanning Strategy and Texture Evolution in the Microstructure
4.5 Mechanical Properties

5 RESIDUAL STRESSES AND THREE-DIMENSIONAL DEFECTS IN LAM
5.1 Design of Precursors in LAM
5.2 Thermal Stress Modeling
5.3 Optimum Laser Parameters and Scanning Strategy Prediction by Modeling
5.4 References

6 SURFACE PHYSICAL TEXTURE IN LAM
6.1 Effect of Melt-Pool Dynamics on Surface Texture
6.2 Surface Physical Texture Variation in LAM
6.3 References
Narendra B. Dahotre is Regents Professor in the Department of Materials Science and Engineering at the University of North Texas, USA. Prior to his current position, he held joint faculty appointments with Oak Ridge National Laboratory and the Department of Materials Science and Engineering of the University of Tennessee-Knoxville. He has been recognized for the pioneering contributions to fundamental understanding and engineering of laser materials interactions along with implementation of high-power lasers in materials processing and advanced manufacturing with primary emphasis on surface engineering, additive manufacturing, and machining.

Mangesh V. Pantawane is Research Assistant in the Department of Materials Science and Engineering at the University of North Texas, USA. He has been conducting research on the fundamental understanding of laser-material interactions for physical phenomena involved behind morphological, microstructural and chemical transitions in materials under non- or near-non-equilibrium thermodynamic and kinetic conditions, with a focus on the development of computational models of these transitions.