Wiley-VCH, Berlin Field Computation for Accelerator Magnets Cover Written by the leading CERN expert on the topic and adopting a practical approach, this volume fills.. Product #: 978-3-527-40769-9 Regular price: $251.40 $251.40 In Stock

Field Computation for Accelerator Magnets

Analytical and Numerical Methods for Electromagnetic Design and Optimization

Russenschuck, Stephan

Cover

1. Edition March 2010
XX, 758 Pages, Hardcover
320 Pictures (120 Colored Figures)
Monograph

ISBN: 978-3-527-40769-9
Wiley-VCH, Berlin

Short Description

Written by the leading CERN expert on the topic and adopting a practical approach, this volume fills the gap for a concise, one-stop monograph and reference. Covering everything from mathematical theory and optimization to electromagnetic design.

Buy now

Price: 269,00 €

Price incl. VAT, excl. Shipping

Euro prices for Wiley-VCH and Ernst & Sohn titles are only valid for Germany. In EU countries, local VAT applies. Postage will be charged.

Further versions

pdf

Written by a leading expert on the electromagnetic design and engineering of superconducting accelerator magnets, this book offers the most comprehensive treatment of the subject to date. In concise and easy-to-read style, the author lays out both the mathematical basis for analytical and numerical field computation and their application to magnet design and manufacture. Of special interest is the presentation of a software-based design process that has been applied to the entire production cycle of accelerator magnets from the concept phase to field optimization, production follow-up, and hardware commissioning.

Included topics:

Technological challenges for the Large Hadron Collider at CERN
Algebraic structures and vector fields
Classical vector analysis
Foundations of analytical field computation
Fields and Potentials of line currents
Harmonic fields
The conceptual design of iron- and coil-dominated magnets
Solenoids
Complex analysis methods for magnet design
Elementary beam optics and magnet polarities
Numerical field calculation using finite- and boundary-elements
Mesh generation
Time transient effects in superconducting magnets, including superconductor magnetization and cable eddy-currents
Quench simulation and magnet protection
Mathematical optimization techniques using genetic and deterministic algorithms


Practical experience from the electromagnetic design of the LHC magnets illustrates the analytical and numerical concepts, emphasizing the relevance of the presented methods to a great many applications in electrical engineering. The result is an indispensable guide for high-energy physicists, electrical engineers, materials scientists, applied mathematicians, and systems engineers.

Magnets for Accelerators
Algebraic Structures and Vector Fields
Classical Vector Analysis
Maxwell's Equations and Boundary Value Problems
Fields and Potentials of Line Currents
Field Harmonics
Iron-Dominated Magnets
Coil-Dominated Magnets
Complex Analysis Methods for Magnet Design
Field Diffusion
Elementary Beam Optics and Field Requirements
Reference Frames and Magnet Polarities
Finite-Element Formulations
Discretization
Coupling of Boundary and Finite Elements
Superconductor Magnetization
Interstrand Coupling Currents
Quench Simulation
Differential Geometry Applied to Coil-End Design
Mathematical Optimization Techniques
Material Property Data for Quench Simulations
Stephan Russenschuck received his doctorate in electrical engineering from the Darmstadt University of Technology, Germany, specializing in optimization of electrical machines. He joined the European Organization for Nuclear Research (CERN) in 1991 to work on the electromagnetic design of superconducting magnets for the LHC particle accelerator. During the years of LHC development and construction he was responsible for a magnet model construction, the electrical quality assurance during hardware installation, and the polarities of the nearly 11,000 magnet elements. Dr. Russenschuck is the author of the ROXIE program package and a leading authority on mathematical optimization, electromagnetic design, and engineering of accelerator magnets. For seventeen years he has served as a member of the Board of the International COMPUMAG Society. Since 2000 Dr. Russenschuck has been lecturering at the Vienna University of Technology, at the Joint Universities Accelerator School (JUAS), and the CERN Accelerator School (CAS).

S. Russenschuck, CERN, Geneva