John Wiley & Sons Mechanics of Dislocation Fields Cover Accompanying the present trend of engineering systems aimed at size reduction and design at microsco.. Product #: 978-1-84821-375-3 Regular price: $157.94 $157.94 In Stock

Mechanics of Dislocation Fields

Fressengeas, Claude

Cover

1. Edition September 2017
256 Pages, Hardcover
Wiley & Sons Ltd

ISBN: 978-1-84821-375-3
John Wiley & Sons

Buy now

Price: 169,00 €

Price incl. VAT, excl. Shipping

Further versions

epubpdf

Accompanying the present trend of engineering systems aimed at size reduction and design at microscopic/nanoscopic length scales, Mechanics of Dislocation Fields describes the self-organization of dislocation ensembles at small length scales and its consequences on the overall mechanical behavior of crystalline bodies.

The account of the fundamental interactions between the dislocations and other microscopic crystal defects is based on the use of smooth field quantities and powerful tools from the mathematical theory of partial differential equations. The resulting theory is able to describe the emergence of dislocation microstructures and their evolution along complex loading paths. Scale transitions are performed between the properties of the dislocation ensembles and the mechanical behavior of the body.

Several variants of this overall scheme are examined which focus on dislocation cores, electromechanical interactions of dislocations with electric charges in dielectric materials, the intermittency and scale-invariance of dislocation activity, grain-to-grain interactions in polycrystals, size effects on mechanical behavior and path dependence of strain hardening.

Introduction

1. Continuous representation of dislocations

Lattice incompatibility. Burgers vector. Incompatibilityequations.

Continuous distributions ofdislocations. Continuity conditions ainterfaces.

Incompatibility and curvature of the crystallinelattice.

2. Field Equations and evolution equations

Determination of internal stresses. Plastic distortionrate.

Resolution length scale. Evolution equations for thedislocation densities.

Transport waves.

Constitutive assumtions. Rate form of the continuity conditionsat interfaces.

Governing equations in a field theory of dislocations.

Boundary conditions aux limites. Resolution algorithms.

Incremental form of the field equations.

Example : plane dislocations .

3. Constitutive laws

Fields of dislocations et constitutive laws. Dissipation.Incompressibility.

Viscoplasticity. Compatible and incompatible dislocationfields.

4. Intermittency, size effects and complex loading paths

Applicability of field dislocation mechanics.

Intermittency of plasticity. Effets of size on plastic activity.Complex loading paths.

Conclusion

Appendices

Glossary, definitions, notations

Bibliography
Claude Fressengeas, University of Lorraine, France.