John Wiley & Sons Industrial Data Analytics for Diagnosis and Prognosis Cover Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a .. Product #: 978-1-119-66628-8 Regular price: $116.82 $116.82 In Stock

Industrial Data Analytics for Diagnosis and Prognosis

A Random Effects Modelling Approach

Zhou, Shiyu / Chen, Yong

Cover

1. Edition August 2021
352 Pages, Hardcover
Wiley & Sons Ltd

ISBN: 978-1-119-66628-8
John Wiley & Sons

Buy now

Price: 125,00 €

Price incl. VAT, excl. Shipping

Further versions

epubmobipdf

Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model

In Industrial Data Analytics for Diagnosis and Prognosis - A Random Effects Modelling Approach, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book's two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems.

In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers:
* A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions
* Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model
* An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis
* A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals

Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, Industrial Data Analytics for Diagnosis and Prognosis is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis.

Chapter 1 Introduction

Part 1 Statistical Methods and Foundation for Industrial Data Analytics

Chapter 2 Introduction to Data Visualization andChapteraracterization

Chapter 3 Random Vectors and the Multivariate Normal Distribution

Chapter 4 Explaining Covariance Structure: Principal Components

Chapter 5 Linear Model for Numerical and Categorical

Chapter 6 Linear Mixed Effects Model

Part 2 Random Effects Approaches for Diagnosis and Prognosis

Chapter 7 Diagnosis of Variation Source Using PCA

Chapter 8 Diagnosis of Variation Sources Through Random Effects Estimation

Chapter 9 Analysis of System Diagnosability

Chapter 10 Prognosis Through Mixed Effects Models for Longitudinal Data

Chapter 11 Prognosis Using Gaussian Process Model

Chapter 12 Prognosis Through Mixed Effects Models for Time-to-Event Data

Appendix: Basics of Vectors, Matrices, and Linear Vector Space

References

Index
Shiyu Zhou, is a Vilas Distinguished Achievement Professor in the Department of Industrial and Systems Engineering at the University of Wisconsin-Madison. He received his doctorate in Mechanical Engineering from the University of Michigan in 2000.

Yong Chen, is Professor in the Department of Industrial and Systems Engineering at the University of Iowa. He obtained his doctorate in Industrial and Operations Engineering from the University of Michigan in 2003.