Wiley-VCH, Weinheim Elektrochemische Energiewandler und -speicher Cover Angesichts der stets wachsenden Bedeutung regenerativer Energien für die Energieversorgung ist das T.. Product #: 978-3-527-33430-8 Regular price: $55.98 $55.98 In Stock

Elektrochemische Energiewandler und -speicher

Holze, Rudolf / Wu, Yuping

Cover

1. Edition October 2023
XXXII, 428 Pages, Softcover
150 Pictures
Textbook

ISBN: 978-3-527-33430-8
Wiley-VCH, Weinheim

Short Description

Angesichts der stets wachsenden Bedeutung regenerativer Energien für die Energieversorgung ist das Thema elektochemischer Wandlung und -speicherung wichtiger denn je - das ist das Lehrbuch dazu.

Buy now

Price: 59,90 €

Price incl. VAT, excl. Shipping

Further versions

epubmobipdf
1 Prozesse und Anwendungen von elektrochemischer Wandlung und Speicherung
2 Electrochemische Prozesse und Systeme
2.1 Parasitische Reaktionen
2.2 Selbstentladung
2.3 Zelldegeneration
2.3.1 Alterung
3 Thermodynamik elektrochemischer Systeme
4 Kinetik elektrochemischer Energiewandlungsprozesse
4.1 Schritte in Elektrodenreaktionen und Überpotentiale
4.2 Transport
4.3 Ladungsdurchtritt
4.4 Überpotential
4.5 Diffusion
4.6 Weitere Überpotentiale
5 Elektroden und Elektrolyte
6 Experimentelle Methoden
6.1 Batterietester
6.2 Strom-Potentialmessungen
6.3 Lade/Entlade-Messungen
6.4 Batterieladung
6.5 Einfache und zyklische Voltammetrie
6.6 Impedanzmessungen
6.7 Galvanostatische Titration (GITT)
6.8 Potentiostatische Titration (PITT)
6.9 Elektrochemische Potentialsprungspektroskopie (SPECS)
6.10 Elektrochemische Quarzmikrowaage (EQCM)
6.11 Nicht-elektrochemische Methoden
6.11.1 Festkörper-Kernresonanzspektroskopie
6.11.2 Gasadsorptionsmessungen
6.11.3 Mikroskopien
6.11.4 Thermische Messungen
6.11.5 Modellierung
7 Primärsysteme
7.1 Wäßrige Systeme
7.1.1 Zink-Kohle-Batterie
7.1.2 Alkalische Zn//MnO2-Batterie
7.1.3 Zn//HgO-Batterie
7.1.4 Zn//AgO-Batterie
7.1.5 Cd//AgO-Batterie
7.1.6 Mg//MnO2-Batterie
7.2 Nichtwäßrige Systeme
7.2.1 Primäre Lithiumbatterien
7.2.2 Li//MnO2
7.2.3 Li//Bi2O3
7.2.4 Li//CuO
7.2.5 Li//V2O5, Li//Ag2V4O11, und Li//CSVO
7.2.6 Li//CuS
7.2.7 Li//FeS2
7.2.8 Li//CFx-Primärbatterie
7.2.9 Li//I2
7.2.10 Li//SO2
7.2.11 Li//SOCl2
7.2.12 Li//SO2Cl2
7.2.13 Li//Oxyhalid-Primärbatterie
7.3 Metall-Luft-Systeme
7.3.1 Wäßrige Metall-Luft-Batterien
7.3.2 Nichtwäßrige Metall-Luft-Batterien
7.4 Füllbatterien
7.4.1 Seewasser-aktivierte Batterien
7.4.2 Aktivierbare Hochleistungsbatterien
8 Sekundärsysteme
8.1 Wäßrige Systeme
8.1.1 Bleisäure
8.1.2 Bleigitter
8.1.3 Ni-basierte Sekundärbatterien
8.1.4 Wäßrige wiederaufladbare Lithium-Batterien
8.1.5 Wäßrige wiederaufladbare Natrium-Batterien
8.2 Nichtwäßrige Systeme
8.2.1 Lithium-Ionen-Batterien
8.2.2 Wiederaufladbare Li//S-Batterien
8.2.3 Wiederaufladbare Na//S-Batterien
8.2.4 Wiederaufladbare Li//Se-Batterien
8.2.5 Wiederaufladbare Mg-Batterien
8.3 Gel-Polymerelektrolyt-basierte Sekundärbatterien
8.3.1 Gel-Lithium-Ionen-Batterien
8.3.2 Gel-Elektrolyte für Natrium-Batterien
8.4 Festelektrolyt-basierte Sekundärbatterien
8.4.1 Lithium-Ionen-Feststoffbatterien
8.4.2 Wiederaufladbare Lithium-Feststoffbatterien
8.5 Wiederaufladbare Metall-Luft-Batterien
8.5.1 Wiederaufladbare Li//Luft-Batterien
8.5.2 Wiederaufladbare Na//Luft-Batterien
8.5.3 Wiederaufladbare Zn//Luft-Batterien
8.6 Hochtemperatursysteme
8.6.1 Natrium-Schwefel-Batterien
8.6.2 Natrium-Nickel-Batterien
8.6.3 Flüssigmetallakkumulatoren
9 Brennstoffzellen
9.1 Die Sauerstoffelektrode
9.2 Die Wasserstoffelektrode
9.3 Gemeinsamkeiten von Brennstoffzellen
9.4 Klassifizierung von Brennstoffzellen
9.4.1 Niedertemperaturbrennstoffzellen
9.4.2 Alkalische Brennstoffzellen
9.4.3 Polymerelektrolytmembran-Brennstoffzellen (PEMFCs)
9.4.4 Alkoholdirektbrennstoffzellen
9.4.5 Bioelektrochemische Brennstoffzellen
9.4.6 Mitteltemperaturbrennstoffzellen
9.4.7 Phosphorsäurebrennstoffzellen (PAFC)
9.4.8 Schmelzkarbonatbrennstoffzellen (MCFC)
9.4.9 Hochtemperaturbrennstoffzellen (SOFC)
9.5 Anwendungen von Brennstoffzellen
9.6 Brennstoffzellen in Energiespeichersystemen
10 Redoxbatterien
10.1 Das Eisen/Chrom-System
10.2 Das Eisen/Vanadium-System
10.3 Das Eisen/Cadmium-System
10.4 Das Brom/Polysulfid-System
10.5 Das All-Vanadium-System
10.6 Das Vanadium/Brom-System
10.7 Actinid-RFB
10.8 All-organische RFB
10.9 Nichtwäßrige RFB
10.10 Hybride Systeme
10.11 Das Zink/Cer-System
10.12 Das Zink/Brom-System
10.13 Zink/organische Systeme
10.14 Cadmium/organische Systeme
10.15 Das Blei/Bleidioxid-System
10.16 Das Cadmium/Bleidioxid-System
10.17 Das All-Kupfer-System
10.18 Das Zink/Nickel-System
10.19 Das Lithium/LiFePO4-System
10.20 Vanadium-Festsalz-Batterien
10.21 Vanadium-Sauerstoff-Systeme
10.22 Elektrochemische Flußkondensatoren
10.23 Status und Perspektiven
11 Superkondensatoren
11.1 Klassifizierung von Superkondensatoren
11.2 Elektrische Doppelschichtkondensatoren
11.2.1 Elektrolyte für EDLCs
11.2.2 Elektrodenmaterialien für EDLCs
11.2.3 Elektrochemisches Verhalten von EDLCs
11.3 Pseudokondensatoren
11.3.1 RuO2
11.3.2 MnO2
11.3.3 Intrinsisch leitfähige Polymers
11.3.4 Redoxsysteme
11.3.5 Elektrochemisches Verhalten von Pseudokondensatoren
11.4 Hybride Kondensatoren
11.4.1 Negative Elektrodenmaterialien
11.4.2 Positive Elektrodenmaterialien
11.4.3 Elektrochemisches Verhalten von hybriden Kondensatoren
11.5 Vermessung von Superkondensatoren
11.6 Kommerziell erhältliche Superkondensatoren
11.7 Anwendung von Superkondenstoren
11.7.1 Unterbrechungsfreie Stromversorgung
11.7.2 Fahrzeuge
11.7.3 Intelligente Netze
11.7.4 Militärausrüstung
11.7.5 Weitere zivile Anwendungen
Rudolf Holze ist Professor für Physikalische Chemie und Elektrochemie an der Technischen Universität Chemnitz. Nach seinem Studium der Chemie und Promotion in der Elektrochemie an der Universität Bonn hat er sich an der Universität Oldenburg habilitiert. Er hat mehr als 450 wissenschaftliche Veröffentlichungen und er ist Autor, Koautor und Herausgeber von mehr als zehn Büchern.

Yuping Wu, PhD, ist Professor an der School of Energy Science and Engineering, Nanjing Tech University in Nanjing, China. Er hat mehr als 360 Publikationen veröffentlicht, viele Auszeichnungen erhalten, wie z. B. den Distinguished Youth Scientists Award der NSFC, China, und wurde 2015 als einer der einflussreichsten Köpfe von Highly Cited Researchers over the World ausgewählt.